Spatiotemporal patterns and bifurcations in a reaction-diffusion SIR rabies model

发布者:文明办作者:发布时间:2023-05-18浏览次数:10


主讲人:衣凤岐 大连理工大学教授


时间:2023年5月19日9:00


地点:腾讯会议 709 765 165


举办单位:数理学院


主讲人介绍:衣凤岐,教授、博士生导师。现任职于大连理工大学数学科学学院,主要从事微分方程与动力系统的研究,特别关注反应扩散系统的分支理论及其应用。2008年获哈尔滨工业大学基础数学专业博士学位。2010年博士学位论文获得全国优秀博士学位论文提名论文;2014年主持的科研项目获得黑龙江省科学技术奖二等奖;2020年,入选大连市地方级领军人才。


内容介绍:In this talk, I will report our recent works on the dynamics of a reaction-diffusion SIR rabies model which was used to describe the population dynamics of fox rabies. Stability and instability of the endemic equilibrium solutions are discussed in great details. It is shown that with the increase of the carrying capacity, the stability of the endemic equilibirum solution changes; This instability leads to the emergence of Hopf bifurcations; This suggests that the rabies disease may appear periodically via Hopf bifurcations; In particular, Turing instability of both the endemic equilibrium solution and the Hopf bifurcating periodic solutions are also investigated. This talk is based on the joint works with Gaoyang She.