Bifurcations, Periodic Peakons, Wave Solutions of Camassa-Holm and Degasperi-Procosi Type Equations

发布者:文明办作者:发布时间:2023-05-26浏览次数:10

主讲人:李继彬 华侨大学教授


时间:2023年5月27日9:00


地点:三号楼117室


举办单位:数理学院


主讲人介绍:李继彬,教授,博士生导师,国家级突出贡献专家。主要从事动力系统与非线性微分方程等领域的研究。曾主持承担国家自然科学基金重点项目和面上项目等10余项,发表论文250多篇,在“科学出版社”等出版中英文专著10余部,主编教材两部、出版科普书两本。三十余年来培养硕士和博士研究生70余人。曾获国家优秀教学成果二等奖(排名第一),科研成果曾分别获云南省和浙江省科学技术一等奖(排名第一)。


内容介绍:For the generalized Camassa-Holmand Degasperis-Procosi type equations, by using the techniques from dynamical systems and singular traveling wave theory developed by [Li and Chen,2007] to analyze its corresponding traveling wave system depending on four parameters,it was found that under different parameter conditions, its bifurcation portraits exhibit all possible exact explicit bounded solutions (solitary wave solutions, periodic wave solutions, peakon as well as periodic peakons). A total of 30 explicit exact parametric representations of the traveling wave system of the CH-DP type equation are presented.